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INTRODUCTION 

Following his molecular theory of gases, Maxwell [I] arrived 
in 1866 at an equation describing the movement of a com- 
ponent by diffusion caused by a concentration gradient in a 
mixture. Concerning this publication by Maxwell, Stefan [2] 
noted: “Das Studium der Maxwell’schen Abhandlung ist 
nicht leicht”.? He felt prompted to give an illuslrative expla- 
nation of the diffusion processes in the light of hydrodynamic 
laws. St&n clearly recognized that diffilsion can give rise to 
a convective movement in the mixture. He also dcrivcd an 
equation for the calculation of the total transport rate of a 
component caused bq dill‘usion in a mixture with a con- 
centration gradient. 

Onsager and Fuoss [3] seem to be the First who clearly 
distinguished between the ditferent transport mechanismc 
and suggested a calculation of the total transport of a com- 
ponent as a sum of diffusion and convection movcmcnt. At 
about the same time as Onsagcr and Fuoss, Kuusinen [4] 

t ‘Maxwell’s considerations are not simple ’ 

discussed the concept of diffusion to some extent According 
to his opinion. the diffusion process is seen as a movement of 
a component relative to the average velocity of the mixture. 
Disregarding the clear formulation of the diffusion process. 
new elements in a physical sense compared with Stefan’s view 
of diffusion are scarce in Kuusinen’s publication. Later on. 
the same questions were considered by Darken [5] and Hart- 
ley and Crank [6], who gave a precise explanalion of the 
diffusion process and of the diffusion-caused convection in 
mixtures using markers in diffusion space and coordinate 
transformation. 

According to Kuusinen [4]. Darken [5] and Hartley and 
Crank [6], the total flow ralc ri, of a component j in a binary 
mixture with a concentration gradient should be calculated 
by 

ri, = .I, + Y,li. (1) 

In this equation, Y, is the molt fraction of the component j. 
ri is the sum of all tlow rates in the diffusion space and .I, is 
the flow rate by pure diffusion, see Fig. 1. 

For a binary mixture consisting of the components j and 
X-. the total flow! rate ri of the mixture is given by 
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.j,h resistance coefficient 
(’ molar concentration 

D,A diffusion coeficient 
J diffusion 110~~ rate 
!W molar mass 
,i total flow rate 

I’ prebsurc 
.fl universal gas constant 
i time 
T absolute temperature 

NOMENCLATURE 

I, absolute velocity 

I’ coordinate (ditfusion path) 

Greek symbol 
3 temperature 

Subscripts 

I component i 
I, component Ii 
il; binary pair. 

,i = ri, c/i,,. (21 

The total !lou rates ri, and ri, of the components should be 
calculated according to 

II, = (‘,ll, 

/iA = (‘/,l,< I 
(3) 

with (‘, and (‘i as the molar concentrations. and ~1, and u,, as 
the absolute velocities of the components. 

The transport rate J, by pure diffusion obeys Fick’s law 

Here L),, is the dilt‘usion coeticient. (’ is the molar con- 
ccntration of the mixture and J is the dilfusion path. 

Equation (I) is now generally accepted and is used as a 
basic expression for the description of transport processes 
caused by dill’usion [7 91, The derivations of this equation 
by Darken [5] and by Hartley and Crank [6] using some 
inventive means are also accepted. Howcvcr, if one considers 
Stcfan‘s studicb about ditfusion more thoroughly and follows 
his line of rca~oning. one becomes convinced that equation 
( I ) mud alrcadq bc kno\\ n to Stcfan. The reason M hy hc did 

Binary mixture 
Components: j and k 
6 = const, c = const 
p = const 

“j 

dy 

Y4 
Y+dY --c1 

Fig. I. DIKerential volume for deriving the momentum equa- 
tion. The direction of the flow rate ,i, is arbitrary. 

not derive such an equation is probably due to the fact that 
he was primarily interested in a linal form of an equation for 
the flow rate in order to estimate the dilfusion coefhcicnt. 

The aim of this note is to show in honour of Stefan-- 
that equation (I) can very easily be derived. without any 
additional assumptions, following the line of consideration 
already taken by Stcfan. It will begin with equations given 
by Stefan [2. IO]. All his <implifications will also be valid m 
this note. The considerations should be restricted to one- 
duncnsional difusion in a binary mixture of ideal gases obey- 
ing Dalton‘s la\\. The temperature in the diffusion space 
should be the saine c\cl-ywhere and the difl‘usion process is 
caused only by a concentration gradient. The concentration 
of the mixture and the total pressure should he considered 
as constant. 

DERIVATION IN THE LIGHT OF STEFAN’S 
THEORY 

The movement of the component i by dlKurion ill a mixture 
is fo\crned by the momentum equation and the equation of 
continuity. Referring to the sketch in Fig. I. the momentum 
~quallon 111 the i dlrcction can be \\rittcn ii< follows: 

d 1’ == dR,,, (3 

Here / is the time, ~1, is the density. f, is the field force per 
unit mass and I’, is the partial pressure of component j. The 
term dR,, denotes the resistance force exerted by all particles 
of component X- upon all particles ofcomponent j. both being 
in the volume clement d C-. 

The r&stance force dR,, is assumed to depend linearly on 
the relative velocity of the components l,,- llj, on the total 
number of the particles j. i.e. on the mass p, dV of the 
component j III the volume dI,, and on the number of the 
particles /i per unit volume. i.e. on the density /I,~, Therefore. 
the rchistance force d I<,,, may be expressed as 

dX,, = :I ,,,,‘,[ji. (I/) ~ 14,~) d I/’ (6) 

where the quantity ,4,,, ilbbullles the part of a resistance 
coctlicient. 

In most cases the diffusion processes take place very 
slowly. The inertia term, therefore, should not necessarily be 
regarded. If the same is also assumed for the field force, 
/; = 0, the momentum equation (5). together with equation 
(6). simplifies to 

7 = A,,,,,p,,(u- 11& ) = A,, Iw,i\cl,~',~',~(lr, ~- Lli) 
c I' 

(7) 

where Af, and AI, al-e the molar masses of the mixture com- 
ponents j and k. 

Equation (7) was derived by Stefan [IO]. In order to show 
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that this equation expresses the same as the transport equa- 
tion (I), we will use the identity 

c,ci(u,-uk) = c,ri,-c,ri, (8) 

and introduce an intrinsic diffusion coefficient D,i, 

WT 
~ = D,, 
A,,M,M,c 

(9) 

With expressions (8) and (9), the momentum equation (7) 
can be rearranged and written as follows : 

The term c,ti, in this equation should be determined using 
the equation of continuity. For component j, the continuity 
equation reads : 

2 + g ((.,a,) = 0 (11) 

Writing a similar equation for component k, adding it to 
equation (11) and considering that the molar concentration 
c of the mixture, c = c, + ck, is constant, dc/dt = 0, we obtain 

or 

c/u, + cltik = const = cu (12) 

with u as the molar average velocity of the mixture.? 
Combining equations (10) and (12). setting cu = ri and 

p, = yip with p = c%‘T, and regarding equations (3). we 
arrive at the following relationship : 

This expression is identical to equation (I). It states that the 

t The cases u, = 0, uI = 0, have already been considered 
by Stefan [IO]. 

diffusion flow rate of a component j is seen as a difference of 
the total flow of this component and the flow of the mixture 
as the whole. Because equation (13) follows directly from 
equations used by Stefan, and bearing in mind Stefan’s con- 
tributions to the understanding of diffusion processes in gen- 
eral. it becomes obvious to name relationship (13) the Stefan 
equation. 
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